
Getting Started in R - Tidyverse Edition
Saghir Bashir

This version was compiled on February 19, 2019

Are you curious to learn what R can do for you? Do you want to see
how it works? Yes, then this “Getting Started” guide is for you. It uses
realistic examples and a real life dataset to manipulate, visualise and
summarise data. By the end of it you will have an overview of the key
concepts of R and the “tidyverse” package.

R | Tiyverse | Statistics | Data Science

1. Preface

This “Getting Started” guide will give you a flavour of what R1

and the tidyverse can do for you. To get the most out of this
guide, read it whilst doing the examples and exercises using
RStudio2ˆ.

Experiment Safely. Be brave and experiment with commands
and options as it is an essential part of the learning process.
Things can (and will) go “wrong”, like, getting error messages
or deleting things that you create by using this guide. You can
recover from most situations (e.g. by restarting R). To do this
“safely” start with a fresh R session without any other data loaded
(otherwise you could lose it).

2. Introduction

Before Starting. Make sure that:

1. R and RStudio are installed.
2. https://ilustat.com/shared/Getting-Started-in-R.zip has been

downloaded and unzipped
3. Double click "Getting-Started-in-R.Rproj" to open

RStudio with the setup for this guide.

Starting R & RStudio. R starts automatically when you open RStu-
dio (see Figure 1). The console starts with information about
the version number, license and contributors. The last line is
a standard prompt “>” that indicates R is ready and expecting
instructions to do something.

Fig. 1. RStudio Screenshot with Console on the left and Help tab in the bottom right

Quitting R & RStudio. When you quit RStudio you will be asked
whether to Save workspace with two options:

• “Yes” – Your current R workspace (containing the work that
you have done) will be restored next time you open RStudio.

1R project: https://www.r-project.org/
2RStudio IDE: https://www.rstudio.com/products/RStudio/

• “No” – You will start with a fresh R session next time you
open RStudio. For now select “No” to prevent errors being
carried over from previous sessions).

3. R Help

I strongly recommend that you learn how to use R’s useful and
extensive built-in help system which is an essential part of finding
solutions to your R programming problems.

help() function. From the R “Console” you can use the help()
function or ?. For example, try the following two commands
(which give the same result):

help(mean)
?mean

Keyword search. To do a keyword search use the function
apropos() with the keyword in double quotes ("keyword")
or single quote ('keyword'). For example:

apropos("mean")
[1] ".colMeans" ".rowMeans"
[3] "colMeans" "cummean"
[5] "kmeans" "mean"
[7] "mean_cl_boot" "mean_cl_normal"
[9] "mean_sdl" "mean_se"
[11] "mean.Date" "mean.default"
[13] "mean.difftime" "mean.POSIXct"
[15] "mean.POSIXlt" "rowMeans"
[17] "weighted.mean"

Help Examples. Use the example() function to run the examples
at the end of the help for a function:

example(mean)
#
mean> x <- c(0:10, 50)
#
mean> xm <- mean(x)
#
mean> c(xm, mean(x, trim = 0.10))
[1] 8.75 5.50

RStudio Help. Rstudio provides search box in the “Help” tab to
make your life easier (see Figure 1).

Searching On-line For R Help. There are a lot of on-line resources
that can help. However you must understand that blindly copying
and pasting could be harmful and further it won’t help you to
learn and develop. When you search on-line use [R] in your
search term (e.g. “[R] summary statistics by group”). Note that
often there is more than one solution to your problem. It is good
to investigate the different options.

Exercise. Try the following:

1. help(median)
2. ?sd
3. ?max

Learn more at https://ilustat.com/resources/ Getting Started in R | February 19, 2019 | 1–8

https://ilustat.com/shared/Getting-Started-in-R.zip
https://www.r-project.org/
https://www.rstudio.com/products/RStudio/
https://ilustat.com/resources/

Warning. If an R command is not complete then R will show a
plus sign (+) prompt on second and subsequent lines until the
command syntax is correct.

+

To break out this, press the escape key (ESC).

Hint. To recall a previously typed commands use the up arrow
key (↑). To go between previously typed commands use the up
and down arrow (↓) keys. To modify or correct a command use
the left (←) and right arrow (→) keys.

4. Some R Concepts

In R speak, scalars, vectors/variables and datasets are called
objects. To create objects (things) we have to use the assignment
operator <-. For example, below, object height is assigned a
value of 173 (typing height shows its value):

height <- 173
height
[1] 173

Warning: R is case sensitive. age and AgE are different:

age <- 10
AgE <- 50

age
[1] 10
AgE
[1] 50

New lines. R commands are usually separated by a new line but
they can also be separated by a semicolon (;).

Name <- "Leo"; Age <- 25; City <- "Lisbon"
Name; Age; City
[1] "Leo"
[1] 25
[1] "Lisbon"

Comments. It is useful to put human readable comments in your
programs. These comments could help the future you when you
go back to your program. R comments start with a hash sign (#).
Everything after the hash to the end of the line will be ignored
by R.

This comment line will be ignored when run.
City # Text after "#" is ignored.
[1] "Lisbon"

5. R as a Calculator

You can use R as a calculator. Try the following:

2 + 3
[1] 5
(5*11)/4 - 7
[1] 6.75
^ = "to the power of"
7^3
[1] 343

Other math functions. You can also use standard mathematical
functions that are typically found on a scientific calculator.

• Trigonometric: sin(), cos(), tan(), acos(), asin(),
atan()

• Rounding: abs(), ceiling(), floor(), round(), sign(),
signif(), sqrt(), trunc()

• Logarithms & Exponentials: exp(), log(), log10(),
log2()

Square root
sqrt(2)
[1] 1.414214
Round down to nearest integer
floor(8.6178)
[1] 8
Round to 2 decimal places
round(8.6178, 2)
[1] 8.62

Exercise. What do the following pairs of examples do?

1. ceiling(18.33) and signif(9488, 2)
2. exp(1) and log10(1000)
3. sign(-2.9) and sign(32)
4. abs(-27.9) and abs(11.9)

6. Some More R Concepts

You can do some clever and useful things with using the assign-
ment operator <-:

roomLength <- 7.8
roomWidth <- 6.4
roomArea <- roomLength * roomWidth
roomArea
[1] 49.92

Text objects. You can also assign text to an object.

Greeting <- "Hello World!"
Greeting
[1] "Hello World!"

Vectors. The objects presented so far have all been scalars (single
values). Working with vectors is where R shines best as they are
the basic building blocks of datasets. To create a vector we can
use the c() (combine values into a vector) function.

A "numeric" vector
x1 <- c(26, 10, 4, 7, 41, 19)
x1
[1] 26 10 4 7 41 19
A "character" vector of country names
x2 <- c("Peru", "Italy", "Cuba", "Ghana")
x2
[1] "Peru" "Italy" "Cuba" "Ghana"

There are many other ways to create vectors, for example,
rep() (replicate elements) and seq() (create sequences):

Repeat vector (2, 6, 7, 4) three times
r1 <- rep(c(2, 6, 7, 4), times=3)
r1
[1] 2 6 7 4 2 6 7 4 2 6 7 4
Vector from -2 to 3 incremented by half
s1 <- seq(from=-2, to=3, by=0.5)
s1

2 | Learn more at https://ilustat.com/resources/ CC BY SA ilustat • info@ilustat.com

https://ilustat.com/resources/
https://creativecommons.org/licenses/by-sa/4.0/
https://ilustat.com/
mailto:info@ilustat.com

[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
[9] 2.0 2.5 3.0

Vector operations. You can also do calculations on vectors, for
example using x1 from above:

x1 * 2
[1] 52 20 8 14 82 38
round(sqrt(x1*2.6), 2)
[1] 8.22 5.10 3.22 4.27 10.32 7.03

Missing Values. Missing values are coded as NA in R. For example,

x2 <- c(3, -7, NA, 5, 1, 1)
x2
[1] 3 -7 NA 5 1 1
x3 <- c("Rat", NA, "Mouse", "Hamster")
x3
[1] "Rat" NA "Mouse" "Hamster"

Managing Objects. Use function ls() to list the objects in your
workspace. The rm() function removes (deletes) them.

ls()
[1] "age" "Age" "AgE"
[4] "City" "Greeting" "height"
[7] "Name" "r1" "roomArea"
[10] "roomLength" "roomWidth" "s1"
[13] "x" "x1" "x2"
[16] "x3" "xm"
rm(x, x1, x2, x3, xm, r1, s1, AgE, age)
ls()
[1] "Age" "City" "Greeting"
[4] "height" "Name" "roomArea"
[7] "roomLength" "roomWidth"

Exercise. Calculate the gross by adding the tax to net amount.

net <- c(108.99, 291.42, 16.28, 62.29, 31.77)
tax <- c(22.89, 17.49, 0.98, 13.08, 6.67)

7. R Functions and Packages

R Functions. We have already used some R functions (e.g. c(),
mean(), rep(), sqrt(), round()). Most of the computations
in R involves using functions. A function essentially has a name
and a list of arguments separated by a comma. Let’s have look
at an example:

seq(from = 5, to = 8, by = 0.4)
[1] 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

The function name is seq and it has three arguments from, to
and by. The arguments from and to are the start and end values
of a sequence that you want to create, and by is the increment of
the sequence. The seq() functions has other arguments that you
could use which are documented in the help page. For example,
we could use the argument length.out (instead of by) to fix
the length of the sequence as follows:

seq(from = 5, to = 8, length.out = 16)
[1] 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8
[11] 7.0 7.2 7.4 7.6 7.8 8.0

Custom Functions. You can create your own functions (using the
function() function) which is a very powerful way to extend
R. Writing your own functions is outside the scope of this guide.
As you get more and more familiar with R it is very likely that
you will eventually need to learn about them but for now you
don’t need to.

R Packages. You can do many things with a standard R installa-
tion and it can be extended using contributed packages. Packages
are like apps for R. They can contain functions, data and docu-
mentation.

tidyverse. The tidyverse package3 is a collection of packages
to import, manipulate, explore, visualise and model data in a
harmonised and consistent way which helps you to be more pro-
ductive. We will use the tidyverse to visualise and summarise
data.

MUST DO: Ensure that the tidyverse package is installed.

install.packages("tidyverse")

Loading packages. To use the tidyverse package load it using
the library() function:

library(tidyverse)

8. Chick Weight Data

R comes with many datasets installed4. We will use the
ChickWeight dataset to learn about the tidyverse. The help
system gives a basic summary of the experiment from which the
data was collect:

“The body weights of the chicks were measured at birth
and every second day thereafter until day 20. They were
also measured on day 21. There were four groups of
chicks on different protein diets.”

You can get more information, including references by typing:

help("ChickWeight")

The Data. There are 578 observations (rows) and 4 variables:

• Chick – unique ID for each chick.
• Diet – one of four protein diets.
• Time – number of days since birth.
• weight – body weight of chick in grams.

Note. weight has a lower case w (recall R is case sensitive).

Objective. Investigate the effect of diet on the weight over time.

9. Importing The Data

First we will import the data from a file called ChickWeight.csv
using the read_csv() function from the readr package (part
of the tidyverse). The first thing to do, outside of R, is to open
the file ChickWeight.csv to check what it contains and that it
makes sense. Now we can import the data as follows:

CW <- read_csv("ChickWeight.csv")

3Tidyverse: https://www.tidyverse.org/
4Type data() in the R console to see a list of the datasets.

CC BY SA ilustat • info@ilustat.com Getting Started in R | February 19, 2019 | 3

https://www.tidyverse.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://ilustat.com/
mailto:info@ilustat.com

Parsed with column specification:
cols(
Chick = col_double(),
Diet = col_double(),
Time = col_double(),
weight = col_double()
)

All columns (variables) have been read in as numeric values
(i.e. col_double()) but you may see that they are read in a
integer (i.e. col_int()) due to operating system differences.

Important Note. If all goes well then the data is now stored in an
R object called CW. If you get the following error message then
you need to change the working directory to where the data is
stored.

Error: ’ChickWeight.csv’ does not exist in current
working directory ...

Change the working directory in RStudio. From the menu bar
select “Session - Set Working Directory - Choose Directory. . . ”
then go to the directory where the data is stored. Alternatively,
within in R, you could use the function setwd()5.

10. Looking at the Dataset

To look at the data type just type the object (dataset) name:

CW
A tibble: 578 x 4
Chick Diet Time weight
<dbl> <dbl> <dbl> <dbl>
1 18 1 0 39
2 18 1 2 35
3 16 1 0 41
4 16 1 2 45
5 16 1 4 49
6 16 1 6 51
7 16 1 8 57
8 16 1 10 51
9 16 1 12 54
10 15 1 0 41
... with 568 more rows

glimpse() function. If there are too many variables then not all
them may be printed. To overcome this issue we can use the
glimpse() function which makes it possible to see every column
in your dataset (called a “data frame” in R speak).

glimpse(CW)
Observations: 578
Variables: 4
$ Chick <dbl> 18, 18, 16, 16, 16, 16, 1...
$ Diet <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ Time <dbl> 0, 2, 0, 2, 4, 6, 8, 10, ...
$ weight <dbl> 39, 35, 41, 45, 49, 51, 5...

Interpretation. Both of these show that the dataset has 578 ob-
servations and 4 variables as we would expect and as compared
to the original data file ChicWeight.csv. So a good start.

Exercise. It is important to look at the last observations of the
dataset as it could reveal potential data issues. Use the tail()
function to do this. Is it consistent with the original data file
ChickWeight.csv?

5Use getwd() to see the current working directory and setwd("/to/data/path/data.csv") to
change it (important to use / even for Microsoft Windows).

11. Chick Weight: Data Visualisation

ggplot2 Package. To visualise the chick weight data, we will
use the ggplot2 package (part of the tidyverse). Our interest
is in seeing how the weight changes over time for the chicks by
diet. For the moment don’t worry too much about the details just
try to build your own understanding and logic. To learn more
try different things even if you get an error messages.

First plot. Let’s plot the weight data (vertical axis) over time
(horizontal axis).

An empty plot (the plot on the left)
ggplot(CW, aes(Time, weight))
With data (the plot on the right)
ggplot(CW, aes(Time, weight)) + geom_point()

100

200

300

0 5 10 15 20

Time

w
ei

gh
t

● ●
● ● ● ●

●
● ●

●
●

●
● ● ● ● ●

●
●

●
●

● ● ● ● ●
●

●
●

●
●

●
●

●
●

● ● ●
● ● ●

●
●

● ●
●

● ●

●
●

●
● ●

● ●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●
●

● ● ●
●

● ●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

100

200

300

0 5 10 15 20

Time

w
ei

gh
t

Exercise. Switch the variables Time and weight in code used
for the plot on the right? What do you think of this new plot
compared to the original?

Add colour for Diet. The graph above does not differentiate
between the diets. Let’s use a different colour for each diet.

Adding colour for diet
ggplot(CW,aes(Time,weight,colour=factor(Diet))) +

geom_point()

●
●

●
●

● ●
●

● ●

●
●

●
●

● ● ● ●

●
●

●
●

● ●
● ● ●

●

●
●

●
●

●
●

●

●
● ● ●

● ● ●

●
●

●
●

●
●

●

●
●

●
● ●

● ●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●
●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ●

● ●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

● ● ● ●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

200

300

0 5 10 15 20

Time

w
ei

gh
t

factor(Diet)
●

●

●

●

1

2

3

4

Interpretation. It is difficult to conclude anything from this graph
as the points are printed on top of one another (with diet 1
underneath and diet 4 at the top).

Factor Variables. Before we continue, we have to make an im-
portant change to the CW dataset by making Diet and Time
factor variables. This means that R will treat them as categorical
variables (see the <fct> variables below) instead of continu-
ous variables. It will simplify our coding. The next section will
explain the mutate() function.

CW <- mutate(CW, Diet = factor(Diet))
CW <- mutate(CW, Time = factor(Time))
glimpse(CW)

4 | Learn more at https://ilustat.com/resources/ CC BY SA ilustat • info@ilustat.com

https://ilustat.com/resources/
https://creativecommons.org/licenses/by-sa/4.0/
https://ilustat.com/
mailto:info@ilustat.com

Observations: 578
Variables: 4
$ Chick <dbl> 18, 18, 16, 16, 16, 16, 1...
$ Diet <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1...
$ Time <fct> 0, 2, 0, 2, 4, 6, 8, 10, ...
$ weight <dbl> 39, 35, 41, 45, 49, 51, 5...

facet_wrap() function. To plot each diet separately in a grid
using facet_wrap():

Adding jitter to the points
ggplot(CW, aes(Time, weight, colour=Diet)) +

geom_point() +
facet_wrap(~Diet) +
theme(legend.position = "bottom")

● ●
● ● ● ●

●
● ●

●
●

●
● ● ● ● ●

●
● ●

● ● ● ● ● ●
●

● ●

●
●

●
●

●
●

● ● ●
● ● ●

●
●

● ●
●

● ●
●

●
●

● ●

● ●
●

●
●

●
●

● ●
●

● ●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●
●

●
●

●

● ●
●

● ●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

● ● ● ●

●
●

●

●

●

●

●
● ● ● ●

●

● ●

●
●

●

●

●

●

●

●
● ●

●
●

● ●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
● ●

● ●

●

●

● ●

●
●

●
●

●
●

●
●

●

●
● ●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●

● ●

●
●

● ●

●
●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

3 4

1 2

0 2 4 6 8 10121416182021 0 2 4 6 8 10121416182021

100

200

300

100

200

300

Time

w
ei

gh
t

Diet ● ● ● ●1 2 3 4

Exercise. To overcome the issue of overlapping points we can jit-
ter the points using geom_jitter(). Replace the geom_point()
above with geom_jitter(). What do you observe?

Interpretation. Diet 4 has the least variability but we can’t really
say anything about the mean effect of each diet although diet 3
seems to have the highest.

Exercise. For the legend.position try using “top”, “left” and
“none”. Do we really need a legend for this plot?

Mean line plot. Next we will plot the mean changes over time for
each diet using the stat_summary() function:

ggplot(CW, aes(Time, weight,
group=Diet, colour=Diet)) +

stat_summary(fun.y="mean", geom="line")

100

200

0 2 4 6 8 10 12 14 16 18 20 21

Time

w
ei

gh
t

Diet

1

2

3

4

Interpretation. We can see that diet 3 has the highest mean weight
gain by the end of the experiment but we don’t have any infor-
mation about the variation (uncertainty) in the data.

Exercise. What happens when you add geom_point() to the
plot above? Don’t forget the +. Does it make a difference if you
put it before or after the stat_summary(...) line? Hint: Look
very carefully at how the graph is plotted.

Box-whisker plot. To see variation between the different diets we
use geom_boxplot to plot a box-whisker plot. A note of caution
is that the number of chicks per diet is relatively low to produce
this plot.

ggplot(CW, aes(Time, weight, colour=Diet)) +
facet_wrap(~Diet) +
geom_boxplot() +
theme(legend.position = "none") +
ggtitle("Chick Weight over Time by Diet")

● ●●●

●

●●●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

3 4

1 2

0 2 4 6 8 10121416182021 0 2 4 6 8 10121416182021

100

200

300

100

200

300

Time

w
ei

gh
t

Chick Weight over Time by Diet

Interpretation. Diet 3 seems to have the highest “average” weight
gain but it has more variation than diet 4 which is consistent
with our findings so far.

Exercise. Add the following information to the above plot:

• x-axis label (use xlab()): “Time (days)”
• y-axis label (use ylab()): “Weight (grams)”

CC BY SA ilustat • info@ilustat.com Getting Started in R | February 19, 2019 | 5

https://creativecommons.org/licenses/by-sa/4.0/
https://ilustat.com/
mailto:info@ilustat.com

Final Plot. Let’s finish with a plot that you might include in a
publication.

ggplot(CW, aes(Time, weight, group=Diet,
colour=Diet)) +

facet_wrap(~Diet) +
geom_jitter() +
stat_summary(fun.y="mean", geom="line",

colour="black") +
theme(legend.position = "none") +
ggtitle("Chick Weight over Time by Diet") +
xlab("Time (days)") +
ylab("Weight (grams)")

● ●
● ● ● ●

●
● ●

●
●

●
● ● ● ● ●

●
● ●

● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

● ● ●
● ● ●

●
●

● ●
●

● ●
●

●
●

● ●

● ●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●
●

●
●

●

● ●
●

● ●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

●
● ● ●

●
●

●

●

●

●

●
●

● ● ●
●

● ●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●

●
●

●
●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ● ● ● ● ● ● ●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

● ●
● ●

●

●

● ●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●
● ● ● ●

●
●

●

●

●

●

● ●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

3 4

1 2

0 2 4 6 8 10121416182021 0 2 4 6 8 10121416182021

100

200

300

100

200

300

Time (days)

W
ei

gh
t (

gr
am

s)

Chick Weight over Time by Diet

12. Tidyverse: Data Wrangling Basics

In this section we will learn how to wrangle (manipulate)
datasets using the tidyverse package. Let’s start with the
mutate(), select(), rename(), filter() and arrange()
functions.

mutate(). Adds a new variable (column) or modifies an existing
one. We already used this above to create factor variables.

Added a column
CWm1 <- mutate(CW, weightKg = weight/1000)
CWm1
A tibble: 578 x 5
Chick Diet Time weight weightKg
<dbl> <fct> <fct> <dbl> <dbl>
1 18 1 0 39 0.039
2 18 1 2 35 0.035
3 16 1 0 41 0.041
4 16 1 2 45 0.045
5 16 1 4 49 0.049
... with 573 more rows

Modify an existing column
CWm2 <- mutate(CW, Diet = str_c("Diet ", Diet))
CWm2
A tibble: 578 x 4
Chick Diet Time weight

<dbl> <chr> <fct> <dbl>
1 18 Diet 1 0 39
2 18 Diet 1 2 35
3 16 Diet 1 0 41
4 16 Diet 1 2 45
5 16 Diet 1 4 49
... with 573 more rows

select(). Keeps, drops or reorders variables.

Drop the weight variable from CWm1 using minus
select(CWm1, -weight)
A tibble: 578 x 4
Chick Diet Time weightKg
<dbl> <fct> <fct> <dbl>
1 18 1 0 0.039
2 18 1 2 0.035
3 16 1 0 0.041
4 16 1 2 0.045
5 16 1 4 0.049
... with 573 more rows

Keep variables Time, Diet and weightKg
select(CWm1, Chick, Time, Diet, weightKg)
A tibble: 578 x 4
Chick Time Diet weightKg
<dbl> <fct> <fct> <dbl>
1 18 0 1 0.039
2 18 2 1 0.035
3 16 0 1 0.041
4 16 2 1 0.045
5 16 4 1 0.049
... with 573 more rows

rename(). Renames variables whilst keeping all variables.

rename(CW, Group = Diet, Weight = weight)
A tibble: 578 x 4
Chick Group Time Weight
<dbl> <fct> <fct> <dbl>
1 18 1 0 39
2 18 1 2 35
3 16 1 0 41
4 16 1 2 45
5 16 1 4 49
... with 573 more rows

filter(). Keeps or drops observations (rows).

filter(CW, Time==21 & weight>300)
A tibble: 8 x 4
Chick Diet Time weight
<dbl> <fct> <fct> <dbl>
1 7 1 21 305
2 29 2 21 309
3 21 2 21 331
4 32 3 21 305
5 40 3 21 321
... with 3 more rows

For comparing values in vectors use: < (less than), > (greater
than), <= (less than and equal to), >= (greater than and equal
to), == (equal to) and != (not equal to). These can be combined
logically using & (and) and | (or).

arrange(). Changes the order of the observations (rows).

6 | Learn more at https://ilustat.com/resources/ CC BY SA ilustat • info@ilustat.com

https://ilustat.com/resources/
https://creativecommons.org/licenses/by-sa/4.0/
https://ilustat.com/
mailto:info@ilustat.com

arrange(CW, Chick, Time)
A tibble: 578 x 4
Chick Diet Time weight
<dbl> <fct> <fct> <dbl>
1 1 1 0 42
2 1 1 2 51
3 1 1 4 59
4 1 1 6 64
5 1 1 8 76
... with 573 more rows

arrange(CW, desc(weight))
A tibble: 578 x 4
Chick Diet Time weight
<dbl> <fct> <fct> <dbl>
1 35 3 21 373
2 35 3 20 361
3 34 3 21 341
4 35 3 18 332
5 21 2 21 331
... with 573 more rows

Exercise. What does the desc() do? Try using desc(Time).

13. Tidyverse: Pipe operator %>%

In reality you will end up doing multiple data wrangling steps
that you will want to save. This is where the pipe operator, %>%,
plays a very useful role. Let’s have a look at an example:

CW21 <- CW %>%
filter(Time %in% c(0, 21)) %>%
rename(Weight = weight) %>%
mutate(Group = factor(str_c("Diet ", Diet))) %>%
select(Chick, Group, Time, Weight) %>%
arrange(Chick, Time)

CW21
A tibble: 95 x 4
Chick Group Time Weight
<dbl> <fct> <fct> <dbl>
1 1 Diet 1 0 42
2 1 Diet 1 21 205
3 2 Diet 1 0 40
4 2 Diet 1 21 215
5 3 Diet 1 0 43
... with 90 more rows

Read %>% as “then”. To understand the code above we should
read the pipe operator %>% as “then”.

Create a new dataset (object) called CW21 using dataset
CW then keep the data for days 0 and 21 then re-
name variable weight to Weight then create a vari-
able called Group then keep variables Chick, Group,
Time and Weight and then finally arrange the data by
variables Chick and Time.

In practice.

CW21 <- CW %>%
filter(., Time %in% c(0, 21)) %>%
rename(., Weight = weight) %>%
mutate(., Group=factor(str_c("Diet ",Diet))) %>%
select(., Chick, Group, Time, Weight) %>%
arrange(., Chick, Time)

The pipe operator, %>%, replaces the dots (.) with what-
ever is returned from code preceding it. For example, the dot
in filter(., Time %in% c(0, 21)) is replaced by CW. The
output of the filter(...) then replaces the dot in rename(.,
Weight = weight) and so on. Think of it as a data assembly
line with each function doing its thing and passing it to the next.

14. Chick Weight: Summary Statistics

From the data visualisations above we concluded that the diet
3 has the highest mean and diet 4 the least variation. In this
section, we will quantify the effects of the diets using summary
statistics. We start by looking at the number of observations and
the mean by diet and time.

mnsdCW <- CW %>%
group_by(Diet, Time) %>%
summarise(N = n(), Mean = mean(weight)) %>%
arrange(Diet, Time)

mnsdCW
A tibble: 48 x 4
Groups: Diet [4]
Diet Time N Mean
<fct> <fct> <int> <dbl>
1 1 0 20 41.4
2 1 2 20 47.2
3 1 4 19 56.5
4 1 6 19 66.8
5 1 8 19 79.7
... with 43 more rows

group_by() function. For each distinct combination of Diet and
Time, the chick weight data is summarised into the number of
observations (N) and the mean (Mean) of weight.

Other summaries. Let’s also calculate the standard deviation,
median, minimum and maximum values but only at days 0 and
21.

sumCW <- CW %>%
filter(Time %in% c(0, 21)) %>%
group_by(Diet, Time) %>%
summarise(N = n(),

Mean = mean(weight),
SD = sd(weight),
Median = median(weight),
Min = min(weight),
Max = max(weight)) %>%

arrange(Diet, Time)

sumCW
A tibble: 8 x 8
Groups: Diet [4]
Diet Time N Mean SD Median Min
<fct> <fct> <int> <dbl> <dbl> <dbl> <dbl>
1 1 0 20 41.4 0.995 41 39
2 1 21 16 178. 58.7 166 96
3 2 0 10 40.7 1.49 40.5 39
4 2 21 10 215. 78.1 212. 74
5 3 0 10 40.8 1.03 41 39
... with 3 more rows, and 1 more variable:
Max <dbl>

Let’s make the summaries “prettier”, say, for a report or pub-
lication.

CC BY SA ilustat • info@ilustat.com Getting Started in R | February 19, 2019 | 7

https://creativecommons.org/licenses/by-sa/4.0/
https://ilustat.com/
mailto:info@ilustat.com

prettySumCW <- sumCW %>%
mutate(Mean_SD = str_c(format(Mean, digits=1),

" (", format(SD, digits=2), ")")) %>%
mutate(Range = str_c(Min, " - ", Max)) %>%
select(Diet, Time, N, Mean_SD, Median, Range) %>%
arrange(Diet, Time)

prettySumCW
A tibble: 8 x 6
Groups: Diet [4]
Diet Time N Mean_SD Median Range
<fct> <fct> <int> <chr> <dbl> <chr>
1 1 0 20 " 41 (0.9~ 41 39 - ~
2 1 21 16 178 (58.70) 166 96 - ~
3 2 0 10 " 41 (1.5~ 40.5 39 - ~
4 2 21 10 215 (78.1) 212. 74 - ~
5 3 0 10 " 41 (1)" 41 39 - ~
... with 3 more rows

Final Table. Eventually you should be able to produce6 a publi-
cation ready version as follows:

Diet Time N Mean_SD Median Range

1 0 20 41 (0.99) 41.0 39 - 43
1 21 16 178 (58.70) 166.0 96 - 305
2 0 10 41 (1.5) 40.5 39 - 43
2 21 10 215 (78.1) 212.5 74 - 331
3 0 10 41 (1) 41.0 39 - 42
3 21 10 270 (72) 281.0 147 - 373
4 0 10 41 (1.1) 41.0 39 - 42
4 21 9 239 (43.3) 237.0 196 - 322

Interpretation. This summary table offers the same interpretation
as before, namely that diet 3 has the highest mean and median
weights at day 21 but a higher variation than group 4. However
it should be noted that at day 21, diet 1 lost 4 chicks from 20
that started and diet 4 lost 1 from 10. This could be a sign of
some issues (e.g. safety).

Limitations of data. Information on bias reduction measures is
not given and is not available either7. We don’t know if the
chicks were fairly and appropriately randomised to the diets and
whether the groups are comparable (e.g., same breed of chicks,
sex (gender) balance). Hence we should be very cautious with
drawing conclusion and taking actions with this data.

15. Conclusion

This “Getting Started in R” guide introduced you to some of
the basic concepts underlying R and used a real life dataset to
produce some graphs and summary statistics. It is only a flavour
of what R can do but hopefully you have seen some of power of
R and its potential.

What next. There are plenty of R courses, books and on-line
resources that you can learn from. It is hard to recommend any
in particular as it depends on how you learn best. Find things
that work for you (paying attention to the quality) and don’t be
afraid to make mistakes or ask questions. Most importantly have
fun.

6Using the kable() function from the knitr package with functions from the kableExtra package.
7 I contacted the source authors and kindly received the following reply “They were mainly undergrad-

uate projects, final-year, rather than theses, so, unfortunately, it’s unlikely that any record remains,
particularly after so many years.”

8 | Learn more at https://ilustat.com/resources/ CC BY SA ilustat • info@ilustat.com

https://ilustat.com/resources/
https://creativecommons.org/licenses/by-sa/4.0/
https://ilustat.com/
mailto:info@ilustat.com

	Preface
	Experiment Safely

	Introduction
	Before Starting
	Starting R & RStudio
	Quitting R & RStudio

	R Help
	help() function
	Keyword search
	Help Examples
	RStudio Help
	Searching On-line For R Help
	Exercise
	Warning
	Hint

	Some R Concepts
	Warning: R is case sensitive
	New lines
	Comments

	R as a Calculator
	Other math functions
	Exercise

	Some More R Concepts
	Text objects
	Vectors
	Vector operations
	Missing Values
	Managing Objects
	Exercise

	R Functions and Packages
	R Functions
	Custom Functions
	R Packages
	tidyverse
	MUST DO: Ensure that the tidyverse package is installed
	Loading packages

	Chick Weight Data
	The Data
	Note
	Objective

	Importing The Data
	Important Note
	Change the working directory in RStudio

	Looking at the Dataset
	glimpse() function
	Interpretation
	Exercise

	Chick Weight: Data Visualisation
	ggplot2 Package
	First plot
	Exercise
	Add colour for Diet
	Interpretation
	Factor Variables
	facet_wrap() function
	Exercise
	Interpretation
	Exercise
	Mean line plot
	Interpretation
	Exercise
	Box-whisker plot
	Interpretation
	Exercise
	Final Plot

	Tidyverse: Data Wrangling Basics
	mutate()
	select()
	rename()
	filter()
	arrange()
	Exercise

	Tidyverse: Pipe operator %>%
	Read %>% as then
	In practice

	Chick Weight: Summary Statistics
	group_by() function
	Other summaries
	Final Table
	Interpretation
	Limitations of data

	Conclusion
	What next

